A. People, land and climate in a warming world

A 1. Land provides the principal basis for human livelihoods and well-being including the supply of food, freshwater and multiple other ecosystem services, as well as biodiversity. Human use directly affects more than 70% (likely 69-76%) of the global, ice-free land surface (high confidence). Land also plays an important role in the climate system. {1.1, 1.2, 2.3, 2.4, Figure SPM.1}

A 2. Since the pre-industrial period, the land surface air temperature has risen nearly twice as much as the global average temperature (high confidence). Climate change, including increases in frequency and intensity of extremes, has adversely impacted food security and terrestrial ecosystems as well as contributed to desertification and land degradation in many regions (high confidence). {2.2, 3.2, 4.2, 4.3, 4.4, 5.1, 5.2, Executive Summary Chapter 7, 7.2}

A 3. Agriculture, Forestry and Other Land Use (AFOLU) activities accounted for around 13% of CO$_2$, 44% of methane (CH$_4$), and 82% of nitrous oxide (N$_2$O) emissions from human activities globally during 2007-2016, representing 23% (12.0 +/- 3.0 GtCO$_2$e yr$^{-1}$) of total net anthropogenic emissions of GHGs1 (medium confidence). The natural response of land to human-induced environmental change caused a net sink of around 11.2 GtCO$_2$ yr$^{-1}$ during 2007-2016 (equivalent to 29% of total CO$_2$ emissions) (medium confidence); the persistence of the sink is uncertain due to climate change (high confidence). If emissions associated with pre- and post-production activities in the global food system2 are included, the emissions are estimated to be 21-37% of total net anthropogenic GHG emissions (medium confidence). {2.3, Table 2.2, 5.4}.

A 4. Changes in land conditions3, either from land-use or climate change, affect global and regional climate (high confidence). At the regional scale, changing land conditions can reduce or accentuate warming and affect the intensity, frequency and duration of extreme events. The magnitude and direction of these changes vary with location and season (high confidence). {Executive Summary Chapter 2, 2.3, 2.4, 2.5, 3.3}

A 5. Climate change creates additional stresses on land, exacerbating existing risks to livelihoods, biodiversity, human and ecosystem health, infrastructure, and food

1 This assessment only includes CO$_2$, CH$_4$ and N$_2$O.
2 Global food system in this report is defined as ‘all the elements (environment, people, inputs, processes, infrastructures, institutions, etc.) and activities that relate to the production, processing, distribution, preparation and consumption of food, and the output of these activities, including socioeconomic and environmental outcomes at the global level’. These emissions data are not directly comparable to the national inventories prepared according to the 2006 IPCC Guidelines for National Greenhouse Gas.
3 Land conditions encompass changes in land cover (e.g. deforestation, afforestation, urbanisation), in land use (e.g. irrigation), and in land state (e.g. degree of wetness, degree of greening, amount of snow, amount of permafrost)
systems (high confidence). Increasing impacts on land are projected under all future GHG emission scenarios (high confidence). Some regions will face higher risks, while some regions will face risks previously not anticipated (high confidence). Cascading risks with impacts on multiple systems and sectors also vary across regions (high confidence). {2.2, 3.5, 4.2, 4.4, 4.7, 5.1, 5.2, 5.8, 6.1, 7.2, 7.3, Cross-Chapter Box 9 in Chapter 6, Figure SPM.2}

A6. The level of risk posed by climate change depends both on the level of warming and on how population, consumption, production, technological development, and land management patterns evolve (high confidence). Pathways with higher demand for food, feed, and water, more resource-intensive consumption and production, and more limited technological improvements in agriculture yields result in higher risks from water scarcity in drylands, land degradation, and food insecurity (high confidence). {5.1.4, 5.2.3, 6.1.4, 7.2, Cross-Chapter Box 9 in Chapter 6, Figure SPM.2b}

B. Adaptation and mitigation response options

B1. Many land-related responses that contribute to climate change adaptation and mitigation can also combat desertification and land degradation and enhance food security. The potential for land-related responses and the relative emphasis on adaptation and mitigation is context specific, including the adaptive capacities of communities and regions. While land-related response options can make important contributions to adaptation and mitigation, there are some barriers to adaptation and limits to their contribution to global mitigation. (very high confidence) {2.6, 4.8, 5.6, 6.1, 6.3, 6.4, Figure SPM.3}

B2. Most of the response options assessed contribute positively to sustainable development and other societal goals (high confidence). Many response options can be applied without competing for land and have the potential to provide multiple co-benefits (high confidence). A further set of response options has the potential to reduce demand for land, thereby enhancing the potential for other response options to deliver across each of climate change adaptation and mitigation, combating desertification and land degradation, and enhancing food security (high confidence). {4.8, 6.2, 6.3.6, 6.4.3; Figure SPM.3}

B3. Although most response options can be applied without competing for available land, some can increase demand for land conversion (high confidence). At the deployment scale of several GtCO$_2$yr$^{-1}$, this increased demand for land conversion could lead to adverse side effects for adaptation, desertification, land degradation and food security (high confidence). If applied on a limited share of total land and integrated into sustainably managed landscapes, there will be fewer adverse side-effects and some
positive co-benefits can be realised (high confidence). \{4.5, 6.2, 6.4; Cross-Chapter Box 7 in Chapter 6; Figure SPM.3\}

B 4. Many activities for combating desertification can contribute to climate change adaptation with mitigation co-benefits, as well as to halting biodiversity loss with sustainable development co-benefits to society (high confidence). Avoiding, reducing and reversing desertification would enhance soil fertility, increase carbon storage in soils and biomass, while benefitting agricultural productivity and food security (high confidence). Preventing desertification is preferable to attempting to restore degraded land due to the potential for residual risks and maladaptive outcomes (high confidence). \{3.6.1, 3.6.2, 3.6.3, 3.6.4, 3.7.1, 3.7.2\}

B 5. Sustainable land management\(^4\), including sustainable forest management\(^5\), can prevent and reduce land degradation, maintain land productivity, and sometimes reverse the adverse impacts of climate change on land degradation (very high confidence). It can also contribute to mitigation and adaptation (high confidence). Reducing and reversing land degradation, at scales from individual farms to entire watersheds, can provide cost effective, immediate, and long-term benefits to communities and support several Sustainable Development Goals (SDGs) with co-benefits for adaptation (very high confidence) and mitigation (high confidence). Even with implementation of sustainable land management, limits to adaptation can be exceeded in some situations (medium confidence). \{1.3.2, 4.1.5, 4.8, Table 4.2\}

B 6. Response options throughout the food system, from production to consumption, including food loss and waste, can be deployed and scaled up to advance adaptation and mitigation (high confidence). The total technical mitigation potential from crop and livestock activities, and agroforestry is estimated as 2.3-9.6 GtCO\(_2\)e yr\(^{-1}\) by 2050 (medium confidence). The total technical mitigation potential of dietary changes is estimated as 0.7-8 GtCO\(_2\)e yr\(^{-1}\) by 2050 (medium confidence). \{5.3, 5.5, 5.6\}

B 7. Future land use depends, in part, on the desired climate outcome and the portfolio of response options deployed (high confidence). All assessed modelled pathways that limit warming to 1.5\(^\circ\)C or well below 2\(^\circ\)C require land-based mitigation

\(^4\) Sustainable land management is defined in this report as the stewardship and use of land resources, including soils, water, animals and plants, to meet changing human needs, while simultaneously ensuring the long-term productive potential of these resources and the maintenance of their environmental functions. Examples of options include inter alia agroecology (including agroforestry), conservation agriculture and forestry practices, crop and forest species diversity, appropriate crop and forest rotations, organic farming, integrated pest management, the conservation of pollinators, rain water harvesting, range and pasture management, and precision agriculture systems.

\(^5\) Sustainable forest management is defined in this report as the stewardship and use of forests and forest lands in a way, and at a rate, that maintains their biodiversity, productivity, regeneration capacity, vitality, and their potential to fulfill now and in the future, relevant ecological, economic and social functions at local, national and global levels and that does not cause damage to other ecosystems.
and land-use change, with most including different combinations of reforestation, afforestation, reduced deforestation, and bioenergy \textit{(high confidence)}. A small number of modelled pathways achieve 1.5°C with reduced land conversion \textit{(high confidence)} and, thus, reduced consequences for desertification, land degradation, and food security \textit{(medium confidence)}. \{2.6, 6.4, 7.4, 7.6; Cross-Chapter Box 9 in Chapter 6; Figure SPM.4\}

C. Enabling response options

C 1. Appropriate design of policies, institutions and governance systems at all scales can contribute to land-related adaptation and mitigation while facilitating the pursuit of climate-adaptive development pathways \textit{(high confidence)}. Mutually supportive climate and land policies have the potential to save resources, amplify social resilience, support ecological restoration, and foster engagement and collaboration between multiple stakeholders \textit{(high confidence)}. \{Figure SPM.1, Figure SPM.2, Figure SPM.3; 3.6.2, 3.6.3, 4.8, 4.9.4, 5.7, 6.3, 6.4, 7.2.2, 7.3, 7.4, 7.4.7, 7.4.8, 7.5, 7.5.5, 7.5.6, 7.6.6; Cross-Chapter Box 10 in Chapter 7\}

C 2. Policies that operate across the food system, including those that reduce food loss and waste and influence dietary choices, enable more sustainable land-use management, enhanced food security and low emissions trajectories \textit{(high confidence)}. Such policies can contribute to climate change adaptation and mitigation, reduce land degradation, desertification and poverty as well as improve public health \textit{(high confidence)}. The adoption of sustainable land management and poverty eradication can be enabled by improving access to markets, securing land tenure, factoring environmental costs into food, making payments for ecosystem services, and enhancing local and community collective action \textit{(high confidence)}. \{1.1.2, 1.2.1, 3.6.3, 4.7.1, 4.7.2, 4.8, 5.5, 6.4, 7.4.6, 7.6.5\}

C 3. Acknowledging co-benefits and trade-offs when designing land and food policies can overcome barriers to implementation \textit{(medium confidence)}. Strengthened multilevel, hybrid and cross-sectoral governance, as well as policies developed and adopted in an iterative, coherent, adaptive and flexible manner can maximise co-benefits and minimise trade-offs, given that land management decisions are made from farm level to national scales, and both climate and land policies often range across multiple sectors, departments and agencies \textit{(high confidence)}. \{Figure SPM.3; 4.8.5, 4.9, 5.6, 6.4, 7.3, 7.4.6, 7.4.8, 7.4.9, 7.5.6, 7.6.2\}
C 4. The effectiveness of decision-making and governance is enhanced by the involvement of local stakeholders (particularly those most vulnerable to climate change including indigenous peoples and local communities, women, and the poor and marginalised) in the selection, evaluation, implementation and monitoring of policy instruments for land-based climate change adaptation and mitigation (high confidence). Integration across sectors and scales increases the chance of maximising co-benefits and minimising trade-offs (medium confidence). {1.4, 3.1, 3.6, 3.7, 4.8, 4.9, 5.1.3, Box 5.1, 7.4, 7.6}

D. Action in the near-term

D 1. Actions can be taken in the near-term, based on existing knowledge, to address desertification, land degradation and food security while supporting longer-term responses that enable adaptation and mitigation to climate change. These include actions to build individual and institutional capacity, accelerate knowledge transfer, enhance technology transfer and deployment, enable financial mechanisms, implement early warning systems, undertake risk management and address gaps in implementation and upscaling (high confidence). {3.6.1, 3.6.2, 3.7.2, 4.8, 5.3.3, 5.5, 5.6.4, 5.7, 6.2, 6.4, 7.3, 7.4.9, 7.6; Cross-Chapter Box 10 in Chapter 7}

D 2. Near-term action to address climate change adaptation and mitigation, desertification, land degradation and food security can bring social, ecological, economic and development co-benefits (high confidence). Co-benefits can contribute to poverty eradication and more resilient livelihoods for those who are vulnerable (high confidence). {3.4.2, 5.7, 7.5}

D 3. Rapid reductions in anthropogenic GHG emissions across all sectors following ambitious mitigation pathways reduce negative impacts of climate change on land ecosystems and food systems (medium confidence). Delaying climate mitigation and adaptation responses across sectors would lead to increasingly negative impacts on land and reduce the prospect of sustainable development (medium confidence). {Box SPM.1, Figure SPM.2, 2.5, 2.7, 5.2, 6.2, 6.4, 7.2, 7.3.1, 7.4.7, 7.4.8, 7.5.6; Cross-Chapter Box 9 in Chapter 6, Cross-Chapter Box 10 in Chapter 7}